If, as I believe, the Godel argument is consequently forcing us into an acceptance of some form of viewpoint C, the we shall also have to come to terms with some of its other implications. We shall find ourselves driven towards a Platonic viewpoint of things. According to Plato, mathematical concepts and mathematical truths inhabit an actual world of their own that is timeless and without physical location. Plato's world is an ideal world of perfect forms, distinct from the physical world, but in terms of which the physical world must be understood. It also lies beyond our imperfect mental constructions; yet, our minds do have some direct access to this Platonic realm through an 'awareness' of mathematical forms, and our ability to reason about them. We shall find that whilst our Platonic perceptions can be aided on occasion by computation, they are not limited by computation. It is this potential for the 'awareness' of mathematical concepts involved in this Platonic access that gives the mind a power beyond what can ever be achieved by a device dependent solely upon computation for its action.