Site uses cookies to provide basic functionality.

OK
Hubble then made an even more amazing discovery. By measuring the red shift of the stars' spectra (which is the light wave counterpart to the Doppler effect for sound waves), he realized that the galaxies were moving away from us. There were at least two possible explanations for the fact that distant stars in all directions seemed to be flying away from us: (1) because we are the center of the universe, something that since the time of Copernicus only our teenage children believe; (2) because the entire metric of the universe was expanding, which meant that everything was stretching out in all directions so that all galaxies were getting farther away from one another. It became clear that the second explanation was the case when Hubble confirmed that, in general, the galaxies were moving away from us at a speed that was proportional to their distance from us. Those twice as far moved away twice as fast, and those three times as far moved away three times as fast. One way to understand this is to imagine a grid of dots that are each spaced an inch apart on the elastic surface of a balloon. Then assume that the balloon is inflated so that the surface expands to twice its original dimensions. The dots are now two inches away from each other. So during the expansion, a dot that was originally one inch away moved another one inch away. And during that same time period, a dot that was originally two inches away moved another two inches away, one that was three inches away moved another three inches away, and one that was ten inches away moved another ten inches away. The farther away each dot was originally, the faster it receded from our dot. And that would be true from the vantage point of each and every dot on the balloon. All of which is a simple way to say that the galaxies are not merely flying away from us, but instead, the entire metric of space, or the fabric of the cosmos, is expanding. To envision this in 3-D, imagine that the dots are raisins in a cake that is baking and expanding in all directions. On