35ade38
|
"The little Hexagon meditated on this a while and then said to me; "But you have been teaching me to raise numbers to the third power: I suppose three-to-the-third must mean something in Geometry; what does it mean?" "Nothing at all," replied I, "not at least in Geometry; for Geometry has only Two Dimensions." And then I began to shew the boy how a Point by moving through a length of three inches makes a Line of three inches, which may be represented by three; and how a Line of three inches, moving parallel to itself through a length of three inches, makes a Square of three inches every way, which may be represented by three-to-the-second. xxx Upon this, my Grandson, again returning to his former suggestion, took me up rather suddenly and exclaimed, "Well, then, if a Point by moving three inches, makes a Line of three inches represented by three; and if a straight Line of three inches, moving parallel to itself, makes a Square of three inches every way, represented by three-to-the-second; it must be that a Square of three inches every way, moving somehow parallel to itself (but I don't see how) must make Something else (but I don't see what) of three inches every way--and this must be represented by three-to-the-third." "Go to bed," said I, a little ruffled by this interruption: "if you would talk less nonsense, you would remember more sense."
|
|
dimensions
geometry
squared
|
Edwin A. Abbott |